Apress

Universal Artificial Intelligence

Sequential Decisions Based on Algorithmic Probability

By Marcus Hutter

Universal Artificial Intelligence Cover Image

  • ISBN13: 978-3-5402-2139-5
  • 304 Pages
  • User Level: Science
  • Publication Date: January 17, 2006
  • Available eBook Formats: PDF
  • eBook Price: $109.00
Buy eBook Buy Print Book Add to Wishlist
Full Description
This book presents sequential decision theory from a novel algorithmic information theory perspective. While the former is suited for active agents in known environments, the latter is suited for passive prediction in unknown environments. The book introduces these two different ideas and removes the limitations by unifying them to one parameter-free theory of an optimal reinforcement learning agent embedded in an unknown environment. Most AI problems can easily be formulated within this theory, reducing the conceptual problems to pure computational ones. Considered problem classes include sequence prediction, strategic games, function minimization, reinforcement and supervised learning. The discussion includes formal definitions of intelligence order relations, the horizon problem and relations to other approaches. One intention of this book is to excite a broader AI audience about abstract algorithmic information theory concepts, and conversely to inform theorists about exciting applications to AI.
Table of Contents

Table of Contents

  1. 1. A Short Tour Through the Book; 2. Simplicity and Uncertainty; 3. Universal Sequence Prediction; 4. Agents in Known Probabilistic Environments; 5. The Universal Algorithmic Agent AIXI; 6. Important Environmental Classes; 7. Computational Aspects; 8. Discussion; Bibliography; Index
Errata

If you think that you've found an error in this book, please let us know about it. You will find any confirmed erratum below, so you can check if your concern has already been addressed.

* Required Fields

No errata are currently published