Apress

Homogeneous Spaces and Equivariant Embeddings

By D.A. Timashev

Homogeneous Spaces and Equivariant Embeddings Cover Image

Equivariant embeddings are essential tools in solving a variety of problems relating to homogenous spaces in linear algebraic groups. This volume classifies these embeddings using a ‘combinatorial’ data framework, with a special focus on spherical varieties.

Full Description

  • ISBN13: 978-3-6421-8398-0
  • 274 Pages
  • Publication Date: April 6, 2011
  • Available eBook Formats: PDF
  • eBook Price: $124.00
Buy eBook Buy Print Book Add to Wishlist
Full Description
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of 'combinatorial' nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Table of Contents

Table of Contents

  1. Introduction.
  2.  1 Algebraic Homogeneous Spaces.
  3. 2 Complexity and Rank.
  4. 3 General Theory of Embeddings.
  5. 4 Invariant Valuations.
  6. 5 Spherical Varieties.
  7. Appendices.
  8. Bibliography.
  9. Indices
Errata

If you think that you've found an error in this book, please let us know about it. You will find any confirmed erratum below, so you can check if your concern has already been addressed.

* Required Fields

No errata are currently published