Skip to main content
  • Book
  • © 2013

Material Appearance Modeling: A Data-Coherent Approach

  • Presents a unified approach to material appearance modeling that increases the tractibility of this challenging problem
  • Covers the major reflectance mechanisms in realistic rendering, ranging from spatially-variant BRDFs of opaque surfaces to subsurface scattering in translucent volumes
  • Contains detailed algorithm descriptions to facilitate implementation by practitioners
  • Includes the hot new topic of material fabrication with 3D printers
  • Includes supplementary material: sn.pub/extras

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (12 chapters)

  1. Front Matter

    Pages I-X
  2. Introduction

    • Yue Dong, Stephen Lin, Baining Guo
    Pages 1-17
  3. Erratum

    • Yue Dong, Stephen Lin, Baining Guo
    Pages E1-E2
  4. Acquisition and Modeling of Opaque Surfaces

    1. Front Matter

      Pages 19-20
    2. Surface Reflectance Overview

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 21-26
    3. Efficient SVBRDF Acquisition with Manifold Bootstrapping

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 27-48
    4. Interactive SVBRDF Modeling from a Single Image

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 49-72
  5. Modeling and Rendering of Subsurface Light Transport

    1. Front Matter

      Pages 73-74
    2. Overview of Subsurface Light Transport

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 75-78
    3. Modeling Subsurface Light Transport with the Kernel Nyström Method

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 79-94
    4. Modeling and Rendering Subsurface Scattering Using Diffusion Equations

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 95-120
    5. Modeling Textured Translucent Materials with Lazy Solid Texture Synthesis

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 121-140
  6. Material Fabrication

    1. Front Matter

      Pages 141-142
    2. Overview of Material Fabrication

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 143-151
    3. Fabricating Spatially-Varying Subsurface Scattering

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 153-171
    4. Conclusion

      • Yue Dong, Stephen Lin, Baining Guo
      Pages 173-176

About this book

A principal aim of computer graphics is to generate images that look as real as photographs. Realistic computer graphics imagery has however proven to be quite challenging to produce, since the appearance of materials arises from complicated physical processes that are difficult to analytically model and simulate, and image-based modeling of real material samples is often impractical due to the high-dimensional space of appearance data that needs to be acquired.

This book presents a general framework based on the inherent coherency in the appearance data of materials to make image-based appearance modeling more tractable. We observe that this coherence manifests itself as low-dimensional structure in the appearance data, and by identifying this structure we can take advantage of it to simplify the major processes in the appearance modeling pipeline. This framework consists of two key components, namely the coherence structure and the accompanying reconstruction method to fully recover the low-dimensional appearance data from sparse measurements. Our investigation of appearance coherency has led to three major forms of low-dimensional coherence structure and three types of coherency-based reconstruction upon which our framework is built.

This coherence-based approach can be comprehensively applied to all the major elements of image-based appearance modeling, from data acquisition of real material samples to user-assisted modeling from a photograph, from synthesis of volumes to editing of material properties, and from efficient rendering algorithms to physical fabrication of objects. In this book we present several techniques built on this coherency framework to handle various appearance modeling tasks both for surface reflections and subsurface scattering, the two primary physical components that generate material appearance. We believe that coherency-based appearance modeling will make it easier and more feasible for practitioners to bring computer graphics imagery to life.

This book is aimed towards readers with an interest in computer graphics. In particular, researchers, practitioners and students will benefit from this book by learning about the underlying coherence in appearance structure and how it can be utilized to improve appearance modeling. The specific techniques presented in our manuscript can be of value to anyone who wishes to elevate the realism of their computer graphics imagery. For understanding this book, an elementary background in computer graphics is assumed, such as from an introductory college course or from practical experience with computer graphics.

Authors and Affiliations

  • Microsoft Research Asia, Beijing, China, People's Republic

    Yue Dong, Stephen Lin, Baining Guo

About the authors

Yue Dong is an associate researcher in the Internet Graphics Group of Microsoft Research Asia, where his work focuses mainly on appearance modeling with data coherency. He received his Ph.D. in Computer Science from Institute for Advanced Study at Tsinghua University in 2011, under the supervision of Professor Heung-Yeung Shum.

Stephen Lin joined Microsoft Research Asia in June 2000 and is currently a Senior Researcher in the Internet Graphics group. His research lies in the fields of computer vision and computer graphics, with particular interests in computational photography, image processing, and photometric analysis. He has published over 80 papers and has served as a program co-chair of the International Conference on Computer Vision (ICCV) 2011 and the Pacific-Rim Symposium on Image and Video Technology (PSIVT) 2009. He received a B.S.E. in electrical engineering from Princeton University and a Ph.D. in computer science and engineering from the University of Michigan.

Baining Guo is Assistant Managing Director of Microsoft Research Asia, where he also serves as the head of the graphics lab. Prior to joining Microsoft in 1999, Dr. Guo was a senior staff researcher with the Microcomputer Research Labs of Intel Corporation in Santa Clara, California. Dr. Guo received Ph.D. and M.S. from Cornell University and B.S. from Beijing University. Dr. Guo has published extensively in computer graphics and visualization, in the areas of texture and reflectance modeling, texture mapping, translucent surface appearance, real-time rendering, and geometry modeling. He served on the editorial boards of IEEE Transactions on Visualization and Computer Graphics. He is currently on the editorial boards of Computer and Graphics and IEEE Computer Graphics and Applications. He also served on program committees of most major graphics and visualization conferences, including ACM Siggraph, IEEE Visualization, Eurographics Symposium on Rendering, Pacific Graphics, ACM Symposium on Virtual Reality Software and Technology, and ACM Symposium on Solid and Physical Modeling. Dr. Guo has been granted over 30 US patents. Dr. Guo is a fellow of IEEE.

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access