Apress

Preference Learning

By Johannes Fürnkranz , Eyke Hüllermeier

Preference Learning Cover Image

The first book dedicated to this new branch of machine learning and data mining, this comprehensive treatment, which covers everything from label ranking to preference learning and recommender systems, will be required reading for researchers working in AI.

Full Description

  • ISBN13: 978-3-6421-4124-9
  • 476 Pages
  • User Level: Science
  • Publication Date: November 19, 2010
  • Available eBook Formats: PDF
  • eBook Price: $129.00
Buy eBook Buy Print Book Add to Wishlist
Full Description
The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Table of Contents

Table of Contents

  1. Preference Learning: An Introduction.
  2. A Preference Optimization Based Unifying Framework for Supervised Learning Problems.
  3. Label Ranking Algorithms: A Survey.
  4. Preference Learning and Ranking by Pairwise Comparison.
  5. Decision Tree Modeling for Ranking Data.
  6. Co
  7. regularized Least
  8. Squares for Label Ranking.
  9. A Survey on ROC
  10. Based Ordinal Regression.
  11. Ranking Cases with Classification Rules.
  12. A Survey and Empirical Comparison of Object Ranking Methods.
  13. Dimension Reduction for Object Ranking.
  14. Learning of Rule Ensembles for Multiple Attribute Ranking Problems.
  15. Learning Lexicographic Preference Models.
  16. Learning Ordinal Preferences on Multiattribute Domains: the Case of CP
  17. nets.
  18. Choice
  19. Based Conjoint Analysis: Classification vs. Discrete Choice Models.
  20. Learning Aggregation Operators for Preference Modeling.
  21. Evaluating Search Engine Relevance with Click
  22. Based Metrics.
  23. Learning SVM Ranking Function from User Feedback Using Document.
  24. Metadata and Active Learning in the Biomedical Domain.
  25. Learning Preference Models in Recommender Systems.
  26. Collaborative Preference Learning.
  27. Discerning Relevant Model Features in a Content
  28. Based Collaborative Recommender System.
  29. Author Index.
  30. Subject Index
Errata

If you think that you've found an error in this book, please let us know about it. You will find any confirmed erratum below, so you can check if your concern has already been addressed.

* Required Fields

No errata are currently published