Apress

Outlier Analysis

By Charu C. Aggarwal

Outlier Analysis Cover Image

  • ISBN13: 978-1-4614-6395-5
  • 464 Pages
  • User Level: Science
  • Publication Date: January 11, 2013
  • Available eBook Formats: PDF
  • eBook Price: $129.00
Buy eBook Buy Print Book Add to Wishlist
Full Description
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions– the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques  commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data  domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as  credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.
Table of Contents

Table of Contents

  1. An Introduction to Outlier Analysis.
  2. Probabilistic and Statistical Models for Outlier Detection.
  3. Linear Models for Outlier Detection.
  4. Proximity
  5. based Outlier Detection.
  6. High
  7. Dimensional Outlier Detection: The Subspace Method.
  8. Supervised Outlier Detection.
  9. Outlier Detection in Categorical, Text and Mixed Attribute Data.
  10. Time Series and Multidimensional Streaming Outlier Detection.
  11. Outlier Detection in Discrete Sequences.
  12. Spatial Outlier Detection.
  13. Outlier Detection in Graphs and Networks.
  14. Applications of Outlier Analysis.
Errata

If you think that you've found an error in this book, please let us know about it. You will find any confirmed erratum below, so you can check if your concern has already been addressed.

* Required Fields

No errata are currently published