Learn PySpark
Build Python-based Machine Learning and Deep Learning Models
Authors: Singh, Pramod
Download source code Free Preview- Covers entire range of PySpark’s offerings from streaming to graph analytics
- Build standardized work flows for pre-processing and builds machine learning and deep learning models on big data sets
- Discusses how to schedule different Spark jobs using Airflow
Buy this book
- About this book
-
Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.
You'll start by reviewing PySpark fundamentals, such as Spark’s core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms.
You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.
What You'll Learn- Develop pipelines for streaming data processing using PySpark
- Build Machine Learning & Deep Learning models using PySpark latest offerings
- Use graph analytics using PySpark
- Create Sequence Embeddings from Text data
Data Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data. - Develop pipelines for streaming data processing using PySpark
- About the authors
-
Pramod Singh is currently a Manager (Data Science) at Publicis Sapient and working as data science lead for a project with Mercedes Benz. He has spent the last nine years working on multiple Data projects at SapientRazorfish, Infosys & Tally and has used traditional to advanced machine learning and deep learning techniques in multiple projects using R, Python, Spark and Tensorflow. Pramod has also been a regular speaker at major conferences in India and abroad and is currently authoring a couple of books on Deep Learning and AI techniques. He regularly conducts Data Science meetups at SapientRazorfish and presents webinars on Machine Learning and Artificial Intelligence. He lives in Bangalore with his wife and 2-year-old son. In his spare time, he enjoys coding, reading and watching football.
- Table of contents (8 chapters)
-
-
Introduction to Spark
Pages 1-16
-
Data Processing
Pages 17-48
-
Spark Structured Streaming
Pages 49-65
-
Airflow
Pages 67-84
-
MLlib: Machine Learning Library
Pages 85-115
-
Table of contents (8 chapters)
Bibliographic Information
- Bibliographic Information
-
- Book Title
- Learn PySpark
- Book Subtitle
- Build Python-based Machine Learning and Deep Learning Models
- Authors
-
- Pramod Singh
- Copyright
- 2019
- Publisher
- Apress
- Copyright Holder
- Pramod Singh
- Distribution Rights
- Standard Apress distribution
- eBook ISBN
- 978-1-4842-4961-1
- DOI
- 10.1007/978-1-4842-4961-1
- Softcover ISBN
- 978-1-4842-4960-4
- Edition Number
- 1
- Number of Pages
- XVIII, 210
- Number of Illustrations
- 155 b/w illustrations, 32 illustrations in colour
- Topics