Get ready for Ignite with 40% off every Microsoft print & eBook >>

Data Mining Algorithms in C++

Data Patterns and Algorithms for Modern Applications

Authors: Masters, Timothy

Download source code
  • An expert-driven data mining and algorithms in C++ book
  • Data mining is an important topic in big data
  • Algorithms are also a critical topic of growing importance 
see more benefits

Buy this book

eBook $39.99
price for USA (gross)
  • ISBN 978-1-4842-3315-3
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Softcover $49.99
price for USA
  • ISBN 978-1-4842-3314-6
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
About this book

Discover hidden relationships among the variables in your data, and learn how to exploit these relationships.  This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications.  All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code.
Many of these techniques are recent developments, still not in widespread use.  Others are standard algorithms given a fresh look.  In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program.  The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work.
What You'll Learn

  • Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your data
  • Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data
  • Work with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methods
  • See how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data
  • Plot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high

Who This Book Is For

Anyone interested in discovering and exploiting relationships among variables.  Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.

About the authors

Timothy Masters has a PhD in statistics and is an experienced programmer.  His dissertation was in image analysis.  His career moved in the direction of signal processing, and for the last 25 years he's been involved in the development of automated trading systems in various financial markets.

Table of contents (5 chapters)

Buy this book

eBook $39.99
price for USA (gross)
  • ISBN 978-1-4842-3315-3
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Softcover $49.99
price for USA
  • ISBN 978-1-4842-3314-6
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.

Services for this book

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Data Mining Algorithms in C++
Book Subtitle
Data Patterns and Algorithms for Modern Applications
Authors
Copyright
2018
Publisher
Apress
Copyright Holder
Timothy Masters
Distribution Rights
Standard Apress distribution
eBook ISBN
978-1-4842-3315-3
DOI
10.1007/978-1-4842-3315-3
Softcover ISBN
978-1-4842-3314-6
Edition Number
1
Number of Pages
XIV, 286
Topics