Skip to main content

Wheeled Mobile Robot Control

Theory, Simulation, and Experimentation

  • Book
  • © 2022

Overview

  • Addresses theoretical, scientific, and practical aspects of differential-drive wheeled nonholonomic mobile robots
  • Provides mathematical modeling of the kinematics and dynamics of differential-drive wheeled nonholonomic mobile robots
  • Presents the design, implementation, and performance of trajectory tracking control systems
  • Proposes kinematic and dynamic trajectory control designs of differential-drive wheeled nonholonomic mobile robots
  • Contains simulation and practical applications that enable the developer to use creativity and imagination to modify, alter, or redo control system designs in kinematic and dynamic scope
  • Gives source code of the control system designs, both kinematic and dynamic
  • Promotes to the related areas an instrument of pedagogical application

Part of the book series: Studies in Systems, Decision and Control (SSDC, volume 380)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book focuses on the development and methodologies of trajectory control of differential-drive wheeled nonholonomic mobile robots. The methodologies are based on kinematic models (posture and configuration) and dynamic models, both subject to uncertainties and/or disturbances. The control designs are developed in rectangular coordinates obtained from the first-order sliding mode control in combination with the use of soft computing techniques, such as fuzzy logic and artificial neural networks. Control laws, as well as online learning and adaptation laws, are obtained using the stability analysis for both the developed kinematic and dynamic controllers, based on Lyapunov’s stability theory. An extension to the formation control with multiple differential-drive wheeled nonholonomic mobile robots in trajectory tracking tasks is also provided. Results of simulations and experiments are presented to verify the effectiveness of the proposed control strategies for trajectory tracking situations, considering the parameters of an industrial and a research differential-drive wheeled nonholonomic mobile robot, the PowerBot. Supplementary materials such as source codes and scripts for simulation and visualization of results are made available with the book.

Authors and Affiliations

  • Department of Informatics, State University of Maringa, Maringá, Brazil

    Nardênio Almeida Martins

  • Department of Electrical Engineering, Universidade do Estado de Santa Catarina, Joinville, Brazil

    Douglas Wildgrube Bertol

About the authors

Nardênio Almeida Martins has completed M.Sc. in Electrical Engineering from the Federal University of Santa Catarina (1997) and Ph.D. in Automation and Systems Engineering from the Federal University of Santa Catarina (2010). He is currently an associate professor in the Department of Informatics and the Graduate Program in Computer Science at the State University of Maringá and a member of the research groups "Robotics" of the Department of Automation and Systems of the Federal University of Santa Catarina—Florianópolis Campus and the "Automation of Systems and Robotics Group" at the State University of Santa Catarina—Joinville Campus, working mainly on the following research topics in robotics: robot manipulators, joint space, operational space, wheeled mobile robots, trajectory tracking, adaptive control, robust control theory, neural networks, fuzzy logic, and Lyapunov stability theory.

Douglas Wildgrube Bertol has completed M.Sc. in Electrical Engineering from the FederalUniversity of Santa Catarina (2009) and Ph.D. in Automation and Systems Engineering from the Federal University of Santa Catarina (2015). He is currently an associate professor in the Department of Electrical Engineering and the Graduate Program in Electrical Engineering at the Universidade do Estado de Santa Catarina and a member of the Systems Automation and Robotics Research Group (GASR) at the same University, working mainly in subjects of applied robotics, mobile robots, trajectory tracking, sliding mode control theory, neural networks, fuzzy logic, and Lyapunov stability theory.

Bibliographic Information

Publish with us