Skip to main content

Analysis of Failure in Fiber Polymer Laminates

The Theory of Alfred Puck

  • Book
  • © 2008

Overview

  • Comprehensive introduction to the most successful among many theories on the failure of fiber composites
  • Written by Puck's pupil and appointed successor Martin Knops
  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

Fiber Reinforced Plastics (FRP) are widely used for the design of load-bearing structures. Life time prediction based on failure analysis is therefore essential for many applications in Aeronautics, Automotive and Civil Engineering. Analysis of Failure in Fiber Polymer Laminates presents Alfred Puck´s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically – as confirmed within the “World-wide Failure Exercise”. Using Puck´s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design. This capability distinguishes the model from other phenomenological and global models. It thus reduces the number of required component tests and iteration loops in the design process and paves the way to sorely needed software for crash-simulation of FRP-structures.

Authors and Affiliations

  • Rotorblattenentwicklung, REpower Systems AG, Rendsburg, Germany

    Martin Knops

Bibliographic Information

Publish with us