Skip to main content
  • Book
  • © 2019

Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials

Basic Principles and Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology (BRIEFSAPPLSCIENCES)

Part of the book sub series: Nanoscience and Nanotechnology (BRIEFSNANOSCIENCE)

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (8 chapters)

  1. Front Matter

    Pages i-ix
  2. Introduction

    • Ali Rafiei Miandashti, Susil Baral, Eva Yazmin Santiago, Larousse Khosravi Khorashad, Alexander O. Govorov, Hugh H. Richardson
    Pages 1-4
  3. Theory of Photo-Thermal Effects for Plasmonic Nanocrystals and Assemblies

    • Eva Yazmin Santiago, Larousse Khosravi Khorashad, Alexander O. Govorov
    Pages 5-22
  4. Photothermal Heating Study Using Er2O3 Photoluminescence Nanothermometry

    • Susil Baral, Ali Rafiei Miandashti, Hugh H. Richardson
    Pages 51-61
  5. Nanoscale Temperature Study of Plasmonic Nanoparticles Using NaYF4:Yb3+:Er3+ Upconverting Nanoparticles

    • Ali Rafiei Miandashti, Susil Baral, Hugh H. Richardson
    Pages 63-72

About this book

This book highlights the theoretical foundations of and experimental techniques in photothermal heating and applications involving nanoscale heat generation using gold nanostructures embedded in various media. The experimental techniques presented involve a combination of nanothermometers doped with rare-earth atoms, plasmonic heaters and near-field microscopy. The theoretical foundations are based on the Maxwell’s and heat diffusion equations. In particular, the working principle and application of AlGaN:Er3+ film, Er2O3 nanoparticles and β-NaYF4:Yb3+,Er3+ nanocrystals for nanothermometry based on Er3+ emission are discussed. The relationship between superheated liquid and bubble formation for optically excited nanostructures and the effects of the surrounding medium and solution properties on light absorption and scattering are presented. The application of Er2O3 and β-NaYF4:Yb3+,Er3+ nanocrystals to study the temperature of optically heated gold nanoparticles is also presented. In closing, the book presents a new thermal imaging technique combining near-field microscopy and Er3+ photoluminescence spectroscopy to monitor the photothermal heating and steady-state sub-diffraction local temperature of optically excited gold nanostructures.


Authors and Affiliations

  • Department of Chemistry and Biochemistry, Ohio University, Athens, USA

    Ali Rafiei Miandashti, Hugh H. Richardson

  • Department of Chemistry and Chemical Biology, Cornell University, Ithaca, USA

    Susil Baral

  • Department of Physics and Astronomy, Ohio University, Athens, USA

    Eva Yazmin Santiago, Larousse Khosravi Khorashad, Alexander O. Govorov

About the authors

Ali Rafiei Miandashti graduated from the University of Sistan and Baluchestan with a B.Sc. in Chemistry, and from the University of Kashan, Iran with an M.Sc. degree in Nanoscience and Nanotechnology. He is currently a Ph.D. candidate under the supervision of Professor Hugh H. Richardson at the Department of Chemistry and Biochemistry, Ohio University.

 

Susil Baral received his B.Sc. and M.Sc. (Chemistry) degrees from Tribhuvan University, Nepal. He later completed his Ph.D. degree in Chemistry at the Department of Chemistry and Biochemistry, Ohio University, under the instruction of Professor Hugh H. Richardson. Susil is currently working as a Postdoctoral Associate at Professor Peng Chen’s lab at the Department of Chemistry and Chemical Biology, Cornell University.

Eva Yazmin Santiago graduated from the National Autonomous University of Mexico (UNAM) with a B.Sc. in Physics. She is currently a Ph.D. student under the supervision of Professor Alexander Govorov at the Department of Physics, Ohio University.

Larousse Khosravi Khorashad received his B.Sc. from Ferdowsi University of Mashhad and M.Sc. degree from Tarbiat Modares University, Iran. He later completed his Ph.D. degree in the Department of Physics and Astronomy at Ohio University under supervision of Professor Alexander O. Govorov. After one year as a postdoctoral researcher at the University of California San Diego, he is now working as a postdoctoral associate at Professor Govorov’s lab at the Department of Physics and Astronomy at Ohio University.

 

Alexander Govorov is a Distinguished Professor of Physics at Ohio University in the U.S. and a Chang Jiang Chair Professor at the UESTC in Chengdu, China. He is a Fellow of the American Physical Society and the recipient of several international awards including the Walton Visitor Award (Ireland), the 1000-Talent Award (Sichuan, China), the Jacques-Beaulieu Excellence Research Chair Award (Canada), etc.

 

Hugh Richardson received his Ph.D. degree from Oklahoma State University under the direction of Paul Devlin and subsequent postdoctoral training at Indiana University working with George Ewing. He is currently a Professor of Physical Chemistry at Ohio University.



Bibliographic Information

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access