Skip to main content
Book cover

Soft Actuators

Materials, Modeling, Applications, and Future Perspectives

  • Book
  • © 2019

Overview

  • Facilitates quick learning with the inclusion of the newest technology and information on basic science and practical applications of soft actuators
  • Makes generous use of color figures, diagrams, and photographs to provide full descriptions of the mechanism, apparatus, and motion of soft actuators
  • Inspires readers with new ideas and encourages their research and development, opening up a new field of applications for the utilization and industrialization of soft actuators

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (41 chapters)

  1. Introduction

  2. Materials of Soft Actuators: Thermo-Driven Soft Actuators

  3. Materials of Soft Actuators: Electro-Driven Soft Actuators

Keywords

About this book

This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators.Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators. 

Editors and Affiliations

  • National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan

    Kinji Asaka

  • Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan

    Hidenori Okuzaki

About the editors

Kinji Asaka received his Ph.D. degree in Science from Kyoto University in 1990. He is currently a Group Leader of Hybrid Actuator Group, Inorganic Functional Material Research Institute at AIST. His current research interests include interfacial electrochemistry and polymer actuators. He is a member of the Society of Polymer Science, Japan and the Society of Instrument and Control Engineers.

Hidenori Okuzaki received his Ph.D. degree in Science from Hokkaido University in 1994. Since 1994, he has been working on organic electronics using conductive polymers as an assistant professor of the Faculty of Engineering, University of Yamanashi. He has been an associate professor in 2003 and he has dealt with conducting micro- and nano-fibers, and organic field-effect transistors. Since 2014, he has been a professor of the Graduate Faculty of Interdisciplinary Research, University of Yamanashi and he has been focusing on the synthesis of highly conductive polymers andapplications to soft sensors and actuators for organic robotics.

Bibliographic Information

Publish with us