Skip to main content

Experimental Research of Cavity Optomechanics

  • Book
  • © 2021

Overview

  • Nominated as an outstanding Ph.D. thesis by the University of Science and Technology of China
  • Demonstrates optomechanically induced non-reciprocity
  • Elaborates on how to create non-reciprocal multifunctional photonic devices
  • Successfully demonstrates Brillouin-scattering-induced transparency and non-reciprocal light storage

Part of the book series: Springer Theses (Springer Theses)

  • 2901 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

This thesis presents experimental research on the interaction between the optical field and the mechanical oscillator in whispering-gallery mode microcavities. It demonstrates how optomechanical interactions in a microresonator can be used to achieve non-magnetic non-reciprocity and develop all-optically controlled non-reciprocal multifunctional photonic devices. The thesis also discusses the interaction between the travelling optical and mechanical whispering-gallery modes, paving the way for non-reciprocal light storage as a coherent, circulating acoustic wave with a lifetime of up to tens of microseconds. Lastly, the thesis presents a high-frequency phase-sensitive heterodyne vibrometer, operating up to 10 GHz, which can be used for the high-resolution, non-invasive mapping of the vibration patterns of acoustic devices. The results presented here show that optomechanical devices hold great potential in the field of information processing.

Authors and Affiliations

  • University of Science and Technology of China, Hefei, China

    Zhen Shen

About the author

Dr. Zhen Shen received his Ph.D. from the University of Science and Technology of China, Hefei in 2017, under the supervision of Prof. Chun-Hua Dong. His research chiefly focuses on micro/nano optics, microcavities and optomechanics.

Bibliographic Information

Publish with us