Plane Answers to Complex Questions

The Theory of Linear Models

4th Edition

By Ronald Christensen

Plane Answers to Complex Questions Cover Image

This updated textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models.

Full Description

  • ISBN13: 978-1-4419-9815-6
  • 515 Pages
  • Publication Date: May 18, 2011
  • Available eBook Formats: PDF
  • eBook Price: $99.00
Buy eBook Buy Print Book Add to Wishlist

Related Titles

Full Description
This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill’s generalization of Tukey’s one degree of freedom for nonadditivity test.
Table of Contents

Table of Contents

  1. Introduction.
  2. Estimation.
  3. Testing.
  4. One
  5. Way ANOVA.
  6. Multiple Comparison Techniques.
  7. Regression Analysis.
  8. Multifactor Analysis of Variance.
  9. Experimental Design Models.
  10. Analysis of Covariance.
  11. General Gauss
  12. Markov Models.
  13. Split Plot Models.
  14. Mixed Models and Variance Components.
  15. Model Diagnostics.
  16. Variable Selection.
  17. Collinearity and Alternative Estimates.
Errata

Please Login to submit errata.

No errata are currently published