Apress Access

Coarse-to-Fine Natural Language Processing

By Slav Petrov , Eugene Charniak

  • eBook Price: $149.00
Buy eBook Buy Print Book

Coarse-to-Fine Natural Language Processing Cover Image

This book presents a coarse-to-fine framework for learning and inference in large statistical models for natural language processing. The text shows applications of this fast, accurate approach to syntactic parsing, speech recognition and machine translation.

Full Description

  • Add to Wishlist
  • ISBN13: 978-3-6422-2742-4
  • 127 Pages
  • User Level: Science
  • Publication Date: November 3, 2011
  • Available eBook Formats: PDF
Full Description
The impact of computer systems that can understand natural language will be tremendous. To develop this capability we need to be able to automatically and efficiently analyze large amounts of text. Manually devised rules are not sufficient to provide coverage to handle the complex structure of natural language, necessitating systems that can automatically learn from examples. To handle the flexibility of natural language, it has become standard practice to use statistical models, which assign probabilities for example to the different meanings of a word or the plausibility of grammatical constructions.This book develops a general coarse-to-fine framework for learning and inference in large statistical models for natural language processing.Coarse-to-fine approaches exploit a sequence of models which introduce complexity gradually. At the top of the sequence is a trivial model in which learning and inference are both cheap. Each subsequent model refines the previous one, until a final, full-complexity model is reached. Applications of this framework to syntactic parsing, speech recognition and machine translation are presented, demonstrating the effectiveness of the approach in terms of accuracy and speed. The book is intended for students and researchers interested in statistical approaches to Natural Language Processing. Slav’s work Coarse-to-Fine Natural Language Processing represents a major advance in the area of syntactic parsing, and a great advertisement for the superiority of the machine-learning approach.Eugene Charniak (Brown University)
Table of Contents

Table of Contents

  1. 1.Introduction.
  2. 2.Latent Variable Grammars for Natural Language Parsing.
  3. 3.Discriminative Latent Variable Grammars.
  4. 4.Structured Acoustic Models for Speech Recognition.
  5. 5.Coarse
  6. to
  7. Fine Machine Translation Decoding.
  8. 6.Conclusions and Future Work.
  9. Bibliography.

If you think that you've found an error in this book, please let us know by emailing to editorial@apress.com . You will find any confirmed erratum below, so you can check if your concern has already been addressed.
No errata are currently published