Optimized Bayesian Dynamic Advising

Theory and Algorithms

By Miroslav Karny

Optimized Bayesian Dynamic Advising Cover Image

  • ISBN13: 978-1-8523-3928-9
  • 556 Pages
  • User Level: Science
  • Publication Date: March 30, 2006
  • Available eBook Formats: PDF
  • eBook Price: $149.00
Buy eBook Buy Print Book Add to Wishlist
Full Description
Written by one of the world’s leading groups in the area of Bayesian identification, control, and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising.Starting from abstract ideas and formulations, and culminating in detailed algorithms, the book comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modeling by dynamic mixture models and fully probabilistic dynamic optimization.Written for a broad audience, including developers of algorithms and application engineers, researchers, lecturers, and postgraduates, this book can be used as a reference tool, and an advanced text on Bayesian dynamic decision making.
Table of Contents

Table of Contents

  1. Introduction.
  2. Underlying Theory.
  3. Approximate and Feasible Learning.
  4. Approximate Design.
  5. Problem Formulation.
  6. Solution and Principles of its Approximation: Learning.
  7. Solution and Principles of its Approximation: Design.
  8. Learning with Normal Factors and Components.
  9. Design with Normal Mixtures.
  10. Learning with Markov Chain Factors and Components.
  11. Design with Markov Chain Mixtures.
  12. Sandwich BMTB for Mixture Initiation.
  13. Mixed Mixtures.
  14. Applications of the Advisory System.
  15. Conclusions.
  16. References.
  17. Index.
Errata

Please Login to submit errata.

No errata are currently published